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Outline:

• Mixed Logit/Logit Kernel

• Heteroskedastic Mixed Logit

• Error-Component Mixed Logit

• Random Parameter Mixed Logit

• Identification

• Issues with Estimation

• Other Mixed Logit Models
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• Choice probability of a Multinomial Choice Context:
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Closed Form Discrete Choice Model 

• Specification of univariate distribution, f(εk) , and the 

joint distribution, f(εj,εk), are necessary

• Probability distribution of random utility (ε) needs 

to be fully specified to get the unconditional 

probability:

• Possible distributions for closed form formulation: 

• Type I Extreme Value distribution

• Generalized Extreme Value
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• Advantages:

• Standard probability equation

• Estimation does not need simulation

Closed Form Discrete Choice Model 

• Disadvantage:

• IIA assumption persists: Even within Nested/GEV 

structure

• Various nesting structure allows overcoming 

group-specific IIA, but within a nest IIA exists

• a priori specification of nesting is required

• Closed form models are (mostly) homoscedastic



Mixing Distribution: Discrete Choice
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• Utility functions of closed-form logit model:

𝑈1 = 𝑉1 + 𝜀1

𝑈2 = 𝑉2 + 𝜀2

𝑈3 = 𝑉3 + 𝜀3

… . … … . . .
𝑈𝐽 = 𝑉𝐽 + 𝜀𝐽

• J alternatives with J, 𝜀 that are 

of IID Type I EV random 

variables with scale 𝜇

• Mix additional random errors (as opposed to considering 

the main random errors are multivariate normal)

𝑈1 = 𝑉1 + 𝜉1 + 𝜀1

𝑈2 = 𝑉2 + 𝜉2 + 𝜀2

𝑈3 = 𝑉3 + 𝜉3 + 𝜀3

… . … … . . .
𝑈𝐽 = 𝑉𝐽 + 𝜉4 + 𝜀𝐽

• Additional random variables, 

𝜉𝑗  have multivariate distributions



Mixed Logit Model
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• Resulting conditional choice models after mixing 

distribution:

Pr 𝑗|𝐶𝑖 =
exp 𝜇 𝑉𝑗 + 𝜉𝑗

σ𝑘∈𝐶𝑖
exp 𝜇 𝑉𝑘 + 𝜉𝑘

Pr 𝑗|𝐶𝑖 =
exp(𝜇𝑉𝑗)

σ𝑘∈𝐶𝑖
exp(𝜇𝑉𝑘)

• Unconditional probability of closed form choice model:

• Unconditional choice models after mixing distribution:

Pr 𝑗|𝐶𝑖 = න
exp 𝜇 𝑉𝑗 + 𝜉𝑗

σ𝑘∈𝐶𝑖
exp 𝜇 𝑉𝑘 + 𝜉𝑘

𝑓 𝜉 𝑑𝜉



Mixed Logit Model

Slide 7

• Mixed Logit model:

Pr 𝑗|𝐶𝑖 = න
exp 𝜇 𝑉𝑗 + 𝜉𝑗

σ𝑘∈𝐶𝑖
exp 𝜇 𝑉𝑘 + 𝜉𝑘

𝑓 𝜉 𝑑𝜉

• Mixed Logit model (using Monte-Carlo):

Pr 𝑗|𝐶𝑖 =
1

𝑅
෍

𝑟=1

𝑅
exp 𝜇 𝑉𝑗 + 𝜉𝑗−𝑟

σ𝑘∈𝐶𝑖
exp 𝜇 𝑉𝑘 + 𝜉𝑘−𝑟

R numbers of 

random draws from 

the multivariate 

distribution of 𝜉𝑗 

• Different assumptions on multivariate distribution 

assumptions of 𝜉𝑗 results in different mixed logit model

• As the core structure of the model remains a Logit model, 

Mixed logit is also called Logit Kernel Model



Heteroskedastic Mixed Logit
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• Considering a multivariate normal random error with zero 

off-diagonals

𝜉 = 𝑀𝑉𝑁

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

• Example: for J=3

𝑈𝑗 = 𝑉𝑗 + 𝜉𝑗+𝜀𝑗 𝑗 = 1,2, 3, … . 𝐽 ∈ 𝐶𝑖

= 𝛽0𝑗 + σ(𝛽𝑥)𝑗 + 𝜉𝑗+𝜀𝑗

A multivariate normal 
error with full 
variance-covariance

IID Type I EV error

= (𝛽0𝑗+𝜉𝑗) + σ(𝛽𝑥)𝑗+𝜀𝑗

Alternative 
Specific 
Constant: ASC



Heteroskedastic Mixed Logit
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• Mixing error specification:

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜉) =

𝜎1
2 0 0

0 𝜎2
2 0

0 0 𝜎3
2

=

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

.

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

Un-known parameters to estimate

3 univariate (un-correlated) 
standard normal draws𝜉 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝜂1

𝜂2

𝜂3

• Simulating mixing error:

𝑈1 = 𝑉1 + 𝜉1+𝜀1

𝑈2 = 𝑉2 + 𝜉2+𝜀2

𝑈3 = 𝑉3 + 𝜉3+𝜀3

Pr 𝑗 =
1

𝑅
෍

𝑟=1

𝑅
exp 𝜇(𝑉𝑗 + 𝜎𝑗𝜂𝑗−𝑟)

σ
𝑘=1
𝐽

exp 𝜇(𝑉𝑘 + 𝜎𝑘𝜂𝑘−𝑟)



Heteroskedastic Mixed Logit
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• Presenting in the form of a factor loading:

• Example: for J=3

𝑈𝑗 = 𝑉𝑗 + 𝐹𝜉+𝜀𝑗

𝐹 =
1 0 0
0 1 0
0 0 1

𝜉 =

𝜉1 0 0
0 𝜉2 0
0 0 𝜉3

=T𝜂 𝑇 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝜂 =

𝜂1

𝜂2

𝜂3

• Example: for J=4

0 0 0

0 0 0

0 0 0

0 0

1

1

1
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Error-Component Mixed Logit
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• Considering a multivariate normal random error with non-

zero off-diagonals

𝑈𝑗 = 𝑉𝑗 + 𝜉𝑗+𝜀𝑗 𝑗 = 1,2, 3, … . 𝐽 ∈ 𝐶𝑖

= 𝛽0𝑗 + σ(𝛽𝑥)𝑗 + 𝜉𝑗+𝜀𝑗

𝜉 follows a 𝑀𝑉𝑁

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

• Example: for J=3

A multivariate normal 
error with full 
variance-covariance

IID Type I EV error

= (𝛽0𝑗+𝜉𝑗) + σ(𝛽𝑥)𝑗+𝜀𝑗

ASC



Error-Component Mixed Logit
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• Mixing error specification:

=

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

=

𝐿1 0 0
𝐿12 𝐿2 0
𝐿13 𝐿23 𝐿3

.

𝐿1 𝐿12 𝐿13

0 𝐿2 𝐿23

0 0 𝐿3

Lower-triangular Cholesky 
factor as Unknown 
parameters to estimate

3 univariate (un-correlated) 
standard normal draws

𝜉 =
𝐿1 0 0
𝐿12 𝐿2 0
𝐿13 𝐿23 𝐿3

𝜂1

𝜂2

𝜂3

• Simulating mixing error:

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜉)

Cholesky factorization of the square 
matrix



Error-Component Mixed Logit
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𝑈1 = 𝑉1 + 𝐿1𝜂1+𝜀1

𝑈2 = 𝑉2 + 𝐿12𝜂1 + 𝐿2𝜂2+𝜀2

𝑈3 = 𝑉3 + 𝐿13𝜂1+𝐿23𝜂2+𝐿3𝜂3+𝜀3

• Mixed utility function:

Pr 1

=
1

𝑅
෍

𝑟=1

𝑅
𝑒 𝜇(𝑉1+𝐿1𝜂1−𝑟)

𝑒 𝜇(𝑉1+𝐿1𝜂1−𝑟) + 𝑒 𝜇(𝑉2+𝐿12𝜂1−𝑟+𝐿2𝜂2−𝑟) + 𝑒 𝜇 𝑉3+𝐿13𝜂1−𝑟+𝐿23𝜂2−𝑟+𝐿3𝜂3−𝑟

Pr 2

=
1

𝑅
෍

𝑟=1

𝑅
𝑒 𝜇(𝑉2+𝐿12𝜂1−𝑟+𝐿2𝜂2−𝑟)

𝑒 𝜇(𝑉1+𝐿1𝜂1−𝑟) + 𝑒 𝜇(𝑉2+𝐿12𝜂1−𝑟+𝐿2𝜂2−𝑟) + 𝑒 𝜇 𝑉3+𝐿13𝜂1−𝑟+𝐿23𝜂2−𝑟+𝐿3𝜂3−𝑟

Pr 3

=
1

𝑅
෍

𝑟=1

𝑅
𝑒 𝜇 𝑉3+𝐿13𝜂1−𝑟+𝐿23𝜂2−𝑟+𝐿3𝜂3−𝑟

𝑒 𝜇(𝑉1+𝐿1𝜂1−𝑟) + 𝑒 𝜇(𝑉2+𝐿12𝜂1−𝑟+𝐿2𝜂2−𝑟) + 𝑒 𝜇 𝑉3+𝐿13𝜂1−𝑟+𝐿23𝜂2−𝑟+𝐿3𝜂3−𝑟



Slide 14

• In the form of a factor loading:

• Example: for J=3

𝐹 =
1 1 1
1 1 1
1 1 1

𝑇 =
𝐿11 0 0
𝐿12 𝐿22 0
𝐿13 𝐿23 𝐿33

𝜂 =

𝜂1

𝜂2

𝜂3

• for J=4 1 1 1

1 1 1

1 1 1

1 1

1

1

1

11

F

 
 
 
 
 
 

=

11

22

33

44

12

13 23

14 24 24

0 0 0

0 0

0

L

L L

L L L

L

L
T

L

L

 

=

 
 
 
 
 

Error-Component Mixed Logit

• Heteroskedastic Mixed Logit is a special case of Error-

Component Mixed Logit with all off-diagonal elements of 

T matrix forced to be zero

𝑈𝑗 = 𝑉𝑗 + 𝐹𝜉+𝜀𝑗 = 𝑉𝑗 + 𝐹(𝑇𝜂)+𝜀𝑗

𝜂 =

𝜂1

𝜂2
𝜂3

𝜂4
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• Full Error-Component model refers to a fully cross-

nested mixed logit model. For example:

Error-Component Mixed Logit

𝑈𝑗 = 𝑉𝑗 + 𝐹𝜉+𝜀𝑗 = 𝑉𝑗 + 𝐹(𝑇𝜂)+𝜀𝑗

𝐹 =
1 1 1
1 1 1
1 1 1

𝑇 =
𝐿11 0 0
𝐿12 𝐿22 0
𝐿13 𝐿23 𝐿33

𝜂 =

𝜂1

𝜂2

𝜂3

• All 3 utility functions are correlated with each other

• Obviously, such full-scale correlation is never identified: 

• Primarily only utility differences matter

• Numerical conditions: order, rank, positive 

definiteness

• A full-blown cross-nested choice model
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• Use targeted mixing to achieve specific nesting structure

𝑈1 = 𝑉1 + 𝜉1+𝜀1

𝐹 =

1 0
1 0
0
0

1
1

𝑇 =
𝜎1 0
0 𝜎2

𝜂 =
𝜂1

𝜂2

Simplified Error-Component Mixed 

Logit: Capturing Nesting

𝑈2 = 𝑉2 + 𝜉1+𝜀2

𝑈3 = 𝑉3  + 𝜉2+𝜀3

𝑈4 = 𝑉4  + 𝜉2+𝜀4

𝑈𝑗 = 𝑉𝑗 + 𝐹(𝑇𝜂)+𝜀𝑗

Choice

Nest 1 Nest 2

Alt-1 Alt-2 Alt-3 Alt-4
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• Use targeted mixing to achieve specific nesting structure

Simplified Error-Component Mixed 

Logit: Capturing Nesting

𝑈1 = 𝑉1 + 𝜉1+𝜀1

𝐹 =

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

𝑇 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

𝜂 =

𝜂1

𝜂2

𝜂3

𝑈2 = 𝑉2 + 𝜉1+𝜀2

𝑈3 = 𝑉3  + 𝜉2+𝜀3

𝑈4 = 𝑉4  + 𝜉3+𝜀4

𝑈𝑗 = 𝑉𝑗 + 𝐹(𝑇𝜂)+𝜀𝑗

𝑈5 = 𝑉5  + 𝜉3+𝜀5

Choice

Nest 1 Nest 2

Alt-1 Alt-2 Alt-3 Alt-4 Alt-5
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• Considering a multivariate normal random distribution of 

the coefficient of a variable x (instead of ASC)

𝑈𝑗 = 𝑉𝑗+𝜀𝑗 𝑗 = 1,2, 3, … . 𝐽 ∈ 𝐶𝑖

= 𝛽0𝑗 + σ(𝛽𝑗 + 𝜉𝑗) 𝑥𝑗+𝜀𝑗

• For a full variance-covariance error, it captures random 

heterogeneity, heteroskedasticity and competitions

• For full or partial variance-covariance, but with unit diagonal 

element, it captures heterogeneity and competitions

• For only diagonal variance-covariance, it captures random 

heterogeneity and heteroskedasticity  

A multivariate normal error 
with full, partial or Diagonal 
variance-covariance

IID Type I EV error

Random Parameter Logit
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𝑈𝑗 = 𝑉𝑗+𝜀𝑗 𝑗 = 1,2, 3, … . 𝐽 ∈ 𝐶𝑖

= 𝛽0𝑗 + σ(𝛽𝑗 + 𝜉𝑗) 𝑥𝑗+𝜀𝑗

Random Parameter Logit

= 𝛽0𝑗 + σ(𝛽𝑗 + 𝐹𝜉𝑗) 𝑥𝑗+𝜀𝑗
Following factor loading 
approach of specification

= 𝛽0𝑗 + σ(𝛽𝑗 + 𝐹(𝑇𝜂)) 𝑥𝑗+𝜀𝑗

1

1

0

0

F

 
 

=  
 
 

1 0

0 J

T





 
 

=  
 
 

1

.

.

J







 
 
 =
 
 
 

• Classical random coefficient Mixed Logit model 

• Frequently, only 1 or 2 alternatives have random coefficients 

and so the rest of the diagonal elements are forced to zero
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• Order condition (‘the number of rows time the number of columns’): 

defines the maximum number of parameters that can be estimated 

based on the number of alternatives in the choice set.

• Rank condition (max number of linearly independent columns of a 

matrix’): defines the actual number of parameters that can be 

estimated based on the number of independent equations available 

for estimation

• Positive definiteness (‘non-zero determinant of a matrix’): 

Restrictions for maintaining the same covariance structure before 

and after normalization for identification restrictions

• Empirical Identification: None of the above can ensure an 

estimation unless empirical data supports the model structure. So, 

empirically, more restrictions may be necessary

Identification
Of the variance-covariance matrix (Ω) of random utility functions 

alternatives in the choice set, the following conditions are assessed:
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Maximum number of parameter that can be identified based on the 

number of alternatives in the choice set: The number of distinct cells in 

the symmetric covariance matrix of random utility difference ΩΔ

Order Condition

• As per order condition, maximum of 𝑆 =
𝐽 𝐽−1

2
− 1  alternative-

specific parameters of the mixing covariance matrix (Ω) can be 

estimated

• 𝑆 =
𝐽 𝐽−1

2
− 1  is the total number of distinct cells in the 

covariance matrix of the utility differences  (ΩΔ) minus 1

• For 2 alts, J=2, s = 0: No alt-specific covariance term is identified

• For 3 alts, J=3, s = 2: up to 2 alt-specific covariance terms are identified

• For 4 alts, J=4, s = 5: up to 5 alt-specific covariance terms are identified

• For 5 alts, J=5, s = 9: up to 9 alt-specific covariance terms are identified

❑ 1 is deducted to set the scale parameter of the IID 

Gumbel of logit error. 
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• Rank of the Jacobian of the covariance matrix of utility 

differences ΩΔ  need to be derived: 

• Jacobian: the first derivative of vectorized covariance 

matrix of utility differences with respect to all unknown 

parameters of random errors

• Rank: the maximum of the number of linearly 

independent rows and columns of the matrix

• Rank can be automatically calculated using Gaussian 

elimination (by reducing the matrix into simple row 

echelon form) method

• Total number of parameters that can be identified is equal to 

the rank of the Jacobian minus 1

• Rank condition is more restrictive than the order condition

Rank Condition
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• Following the Order and Rank conditions, the positive 

definiteness condition is necessary to normalization of un-

identified parameters.

• There could be infinite possible solutions that can generate 

a particular hypothesized covariance structure

• So, normalization is necessary to establish the existence of 

a unique solution without changing the underlying 

preference structure

Positive Definiteness

• Requires investigating the normalization necessary to the 

unique solution of the system of linear equation derived 

from the covariance matrix of utility differences



Slide 24

• Heteroskedastic Mixed Logit: 2 alts

Identification: Order Condition

𝐹 =
1 0
0 1

𝑇 =
𝜎1 0
0 𝜎2

Mixing errors:

Unknown Parameters(3): 𝜎1, 𝜎2 & 𝜇

→ S = 0, so no variance are identified

• Heteroskedastic Mixed Logit: 3 alts

Mixing errors: 𝐹 =
1 0 0
0 1 0
0 0 1

𝑇 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

Unknown Parameters(4): 𝜎1, 𝜎2, 𝜎3& 𝜇

• S = 2, So, up to 2 variances are identified



Slide 25

Identification: Order Condition

• Heteroskedastic Mixed Logit: 4 alts

Mixing errors:

Unknown Parameters (5): 𝜎1, 𝜎2, 𝜎3, 𝜎4& 𝜇

• S = 5, so, potentially all variances are identified

0 0 0

0 0 0

0 0 0

0 0

1

1

1

10

F

 
 
 
 
 
 

=

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

T









 
 
 
 
 
 

=

• Heteroskedastic Mixed Logit: 5 alts

Unknown Parameters(6): 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5& 𝜇

→ S = 9, so, potentially all variances are identified
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• Considering J 
alternatives with Jth as 
the reference: ΩΔ𝑗

Covariance Matrix of Utility Difference

Ω = 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑈𝑗 = 𝐹𝑇𝑇𝑇𝐹𝑇 +
𝑔

𝜇2
𝐼𝐽

I: (J×J) 
identity 
matrix

F: (J×M) 
Factor 
loading 

T: (M×M) 
Cholesky 
factors

𝜇 :The 
scale of 
IID 
Gumbel 
error of 
logit

g= Constant 
of IID Gumbel 
error of logit 

Ω =  Σ  +  Γ

(J×1) 
utility 
functio
ns
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• Considering J 
alternatives with Jth as 
the reference: ΩΔ𝑗

Covariance Matrix of Utility Functions

ΩΔ𝑗
= 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 Δ𝑗𝑈 = Δ𝑗𝐹𝑇𝑇𝑇𝐹𝑇Δ𝑗

𝑇 + Δ𝑗

𝑔

𝜇2
𝐼𝐽Δ𝑗

𝑇

𝛥𝑗: 𝑇he Linear operator 

that transforms J utilities 
into a (J-1) utility 
differences taking Jth as 
the reference

I: (J-1)×(J-1) 
identity 
matrix

F:Factor 
loading 

T:Cholesky 
factor of the 
variance-
covariance 
of mixed 
error term

𝜇 :The scale 
of IID 
Gumbel 
error of logit

g= Constant 
of IID Gumbel 
error of logit 

ΩΔ𝑗
=  Σ  +  Γ
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The case of Heteroskedastic Mixed Logit Model

Covariance Matrix of Utility Difference

• ΔJ is a (J-1)× (J−1) identity matrix with a column 

vector of (-1) inserted as an additional Jth columns

𝐅𝐨𝐫 𝑱 = 𝟐: Δ𝐽 = 1 −1

𝜴𝜟 = Δ𝑗𝐹𝑇𝑇𝑇𝐹𝑇Δ𝑗
𝑇 + Δ𝑗

𝑔

𝜇2
𝐼𝐽Δ𝑗

𝑇

ΩΔ = 𝜎11 + 𝜎22 + 2𝑔/𝜇2

ΩΔ = Δ𝑗𝐹𝑇𝑇𝑇𝐹𝑇Δ𝑗
𝑇 + Δ𝑗

𝑔

𝜇2
𝐼𝐽Δ𝑗

𝑇
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The case of Heteroskedastic Mixed Logit Model

Covariance Matrix of Utility Difference

𝐅𝐨𝐫 𝑱 = 𝟑:

Δ𝐽 =
1 0 −1
0 1 −1

ΩΔ =
𝜎11 + 𝜎33 + 2𝑔/𝜇2 0

𝜎33 + 𝑔/𝜇2 𝜎22 + 𝜎33 + 2𝑔/𝜇2

• ΔJ is a (J-1)× (J−1) identity matrix with a column 

vector of (-1) inserted as an additional Jth columns

ΩΔ = Δ𝑗𝐹𝑇𝑇𝑇𝐹𝑇Δ𝑗
𝑇 + Δ𝑗

𝑔

𝜇2
𝐼𝐽Δ𝑗

𝑇
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The case of Heteroskedastic Mixed Logit Model

Covariance Matrix of Utility Difference

𝐅𝐨𝐫 𝑱 = 𝟒:

ΩΔ =

𝜎11 + 𝜎44 + 2𝑔/𝜇2 0 0

𝜎44 + 𝑔/𝜇2 𝜎22 + 𝜎44 + 2𝑔/𝜇2 0

𝜎44 + 𝑔/𝜇2 𝜎44 + 𝑔/𝜇2 𝜎33 + 𝜎44 + 2𝑔/𝜇2

1 0 0 1

0 1 0 1

0 0 1 1

J

− 
 

 = − 
 − 

• ΔJ is a (J-1)× (J−1) identity matrix with a column 

vector of (-1) inserted as an additional Jth columns

ΩΔ = Δ𝑗𝐹𝑇𝑇𝑇𝐹𝑇Δ𝑗
𝑇 + Δ𝑗

𝑔

𝜇2
𝐼𝐽Δ𝑗

𝑇
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Identification: Rank Condition
• Rank Condition: The total number of parameters that can be 

estimated is equal to the rank (r) of the Jacobian (with respect 

to the parameters of random errors) of the vectorized, ΩΔ 

minus 1: (r-1) number of parameters are identified

The case of Heteroskedastic Mixed Logit Model

For 𝐽 = 2:

• Rank condition is not necessary to check as the order 

condition proves that no alternative-specific covariance 

terms are identified 

• Rank is the number of linearly independent equations 
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Identification: Rank Condition

The case of Heteroskedastic Mixed Logit Model

For 𝐽 = 3:

Vectorized(ΩΔ) = Vec(ΩΔ) =

𝜎11 + 𝜎33 + 2𝑔/𝜇2

𝜎22 + 𝜎33 + 2𝑔/𝜇2

𝜎33 + 𝑔/𝜇2

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎11

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎33

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕(𝑔/𝜇2)

• Rank is the rank (r) of the Jacobian (with respect to the 

unknown parameters of random errors) of the vectorized, ΩΔ 

1 0 1 2

0 1 1 2

0 0 1 1

 
 

=
 
  

→ : Rank =3. So, only    

(3-1)=2 can be 

estimated and rest 

should be 

normalized
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Identification: Rank Condition

The case of Heteroskedastic Mixed Logit Model

For 𝐽 = 4:
Vectorized(ΩΔ) = Vec(ΩΔ) =

𝜎11 + 𝜎44 + 2𝑔/𝜇2

𝜎22 + 𝜎44 + 2𝑔/𝜇2

𝜎33 + 𝜎44 + 2𝑔/𝜇2

𝜎44 + 𝑔/𝜇2

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎11

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎22

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎33

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎44

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕(𝑔/𝜇2)

• Rank is the rank (r) of the Jacobian (with respect to the 

unknown parameters of random errors) of the vectorized, ΩΔ 

1 0 0 1 2

0 1 0 1 2

0 0 1 1 2

0 0 0 1 1

 
 
 =
 
 
 

• : Rank =4. So, only    

(4-1)=3 can be 

estimated and rest 

should be 

normalized
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Identification: Positive Definiteness

• Preferred normalization requires that the 

heteroskedastic term of the minimum variance 

alternative is restricted to zero:

• A priori knowledge on lowest variance 

alternative does not exists

• One has to try either normalizing the 

heteroskedastic term of different alternative 

and identify the best one that gives the best 

goodness of fit

• Or, try estimating unidentified model to have 

clear idea of lowest variance alternative 

The case of Heteroskedastic Mixed Logit Model
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• Error-Component Mixed Logit: Nesting structure

𝐹 =

1 0
1 0
0
0
0

1
1
1

𝑇 =
𝜎1 0
0 𝜎2

Choice

Nest 1 Nest 2

Alt-1 Alt-2 Alt-3 Alt-4

Identification: Order Condition

Unknown Parameters:𝜎1,𝜎2& 𝜇

• S = 9, so, potentially all are identified

Alt-4




 





 


  




 
+ 

 
+ 

 
 +

 =  
 +
 
 

+
 
 
  

11 2

11 11 2

22 2

22 22 2

22 22 22 2

0 0

0 0

0 0

g

g

g

g

g
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• The case of 2 nest of 5 alternatives structure

𝐹 =

1 0
1 0
0
0
0

1
1
1

𝑇 =
𝜎1 0
0 𝜎2

Choice

Nest 1

Nest 2
Alt-1 Alt-2

Alt-3 Alt-4 Alt-5

Covariance Matrix of Utility Difference

2

11 22

2 2

11 22 11 22

2 2 2

2 2 2 2

2 /

/ 2 /

/ / 2 /

/ / / 2 /

g

g g

g g g

g g g g

  

     

  

   



 + +
 

+ + + +  =
 
 
 

• Covariance of utility differences need to be carefully formed

Considering the 5th as the reference:
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Identification: Rank Condition

The case of 2 Nests and 5 Alternatives

Vectorized(ΩΔ) = Vec(ΩΔ) =

𝜎11 + 𝜎22 + 2𝑔/𝜇2

𝜎11 + 𝜎22 + 𝑔/𝜇2

𝑔/𝜇2

2𝑔/𝜇2

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎11

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎22

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕(𝑔/𝜇2)

• Rank is the rank (r) of the Jacobian (with respect to the 

unknown parameters of random errors) of the vectorized, ΩΔ 

1 1 2

1 1 1

0 0 1

0 0 2

 
 
 =
 
 
 

• : Rank =2. So, only    

(2-1) =1 can be 

estimated and rest 

should be 

normalized
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Identification: Positive Definiteness

• Three possible ways of normalization that satisfy 

positive definiteness condition:

• Normalize 𝜎11= 0, estimate 𝜎22

• Or, Normalize 𝜎22= 0, estimate 𝜎11

• Normalize 𝜎11= 𝜎22, estimate 𝜎

• This is valid for any two nest structure irrespective 

of number of alternatives in either nest

The case of 2 nest Error-Component Model
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𝐹 =

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

𝑇 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

Unknown Parameters: 3 𝐶ℎ𝑜𝑙𝑒𝑠𝑘𝑦 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 +  𝜇

• S = 9, so, potentially all are identified

Choice

Nest 1 Nest 2

Alt-1 Alt-2 Alt-3 Alt-4 Alt-5

Identification: Order Condition

• Error-Component Mixed Logit: Nesting structure
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• The case of 3 nests of 5 alternatives structure Choice

Nest 1 Nest 2

Alt-1 Alt-2 Alt-3

Alt-4 Alt-5

Covariance Matrix of Utility Difference

2

11 33

2 2

11 33 11 33

2 2 2

33 33 22 33

2 2 2 2

2 /

/ 2 /

/ / 2 /

/ / / 2 /

g

g g

g g g

g g g g

  

     

      

   



 + +
 

+ + + +  =
 + + + +
 
 

• Covaraince of Utility differences need to be carefully formed

𝐹 =

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

𝑇 =

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

Considering the 5th as the reference:
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Identification: Rank Condition

The case of 3 Nests and 5 Alternatives

Vectorized(ΩΔ) = Vec(ΩΔ) =

𝜎11 + 𝜎33 + 2𝑔/𝜇2

𝜎11 + 𝜎33 + 𝑔/𝜇2

𝜎33 + 𝑔/𝜇2

𝜎22 + 𝜎33 + 2𝑔/𝜇2

𝑔/𝜇2

2𝑔/𝜇2

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎11

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎22

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕𝜎33

𝜕𝑉𝑒𝑐(ΩΔ)/𝜕(𝑔/𝜇2)

• Rank is the rank (r) of the Jacobian (with respect to the 

unknown parameters of random errors) of the vectorized, ΩΔ 

1 0 1 2

1 0 1 1

0 0 1 1

0 1 1 2

0 0 0 1

0 0 0 2

 
 
 
 

=  
 
 
 
 

• : Rank =4. So, only    

(4-1)=3 can be 

estimated. 

Potentially, only 𝜇 

needs to be 

normalized
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Identification: Positive Definiteness

• All three heteroskedastic terms (𝜎11, 𝜎22, 𝜎33) are 

identified and can be estimated

• This can be extended to any 3 nest case, where 

nests can have only 1 alternative as long as only 

one nest has at least 3 alternatives

The case of 2 nest Error-Component Model

• Investigating the normalization necessary to the 

unique solution of the system of linear equation 

derived from the covariance matrix of utility 

differences: 
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• Random parameter mixed logit that does not capture 

competition between different alternatives, the identification 

restrictions related to Heteroskedastic model are valid

• Random parameter mixed logit can also use error-nesting 

approach to capture parameter distribution as well as 

competition.

• Identification issues of error-nesting models are valid 

here

• In some cases, random parameters may need to have non-

normal distribution:

• Lognormal distribution, Triangular distribution or 

Truncated normal distribution for travel time/cost 

Random Parameter Mixed Logit
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Issues with Estimation

• Maximum Simulated Likelihood (MSL) estimation requires 

simulating random variables:

• Monte Carlo simulation of any random variable (of any 

distribution type) requires generating uniform random 

variables

• MSL requires that the generated uniform random 

variables are uncorrelated

• Pseudo-random number generators induce serial 

correlations

• Alternative methods to overcome serial correlations: 

Halton sequence, Scrambled Halton sequence, Latin 

hypercube sampling etc.



Other Logit Kernel Models
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• Latent variable mixed logit model

• Random scale mixed logit model

• Latent class mixed logit model



Mixing Distribution: Others
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• Closed-form model: Continuous, Ordered, Count

• 𝜀𝑗 follows any legitimate marginal 

distribution

• Mix additional random errors

• Additional random variables, 

𝜉𝑗  can have multivariate distribution

𝑦𝑗 = ෍ 𝛽𝑥 + 𝜀𝑗

𝑦𝑗 = ෍ 𝛽𝑥 + 𝜉𝑗 + 𝜀𝑗

• Such error mixing can allow 

• Random parameter (Random heterogeneity)

• Correlated data points (e.g. panel data, time series, 

autocorrelation, etc.)

𝑦𝑗 = ෍(𝛽 + 𝜉𝑗)𝑥 + 𝜀𝑗



Further Topics
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Bayesian Estimation of Mixed Logit model: Using 

Hierarchical Bayes Approach

• All random parameters

• Mix of random and fixed parameters
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