

Trip Distribution

CIVE 461 Urban Transportation Planning Supplemental Notes

Outline

Nebraska Lincoln

- 1. Problem definition & terminology
- 2. Proportional flow theory
- 3. Growth factor model
- 4. Synthetic model:
 - Gravity model
 - Entropy maximizing model
- 5. Biproportional updating:
 - Growth factor model
 - Gravity model
- 6. Impedance function
- 7. Goodness of fit and other measures
- 8. Drawbacks

Problem Definition

- Trip generation gives **total trips** generated from each origin zone (O_i) and total trips attracted to each destination zone (D_i)
- OD intercept or home travel diaries can be used to determine trip patterns in terms of the combination of origin and destination pairs
 - Even with a large sample, we will have zone pairs that are **not sampled**, so we need a method that can generate trips between OD pairs
- Trip distribution stage estimates the "most likely" origin-destination (O-D) trip (or flow) matrix, given known origin and destination totals for each zone (plus any additional relevant & known information)
- We will focus here on aggregate distribution methods, but it is possible to consider distribution as a disaggregate choice using discrete choice models of destination choice (subsequent lectures)

Defining Terms

 $T_{ij} = \text{total trips from origin } i \text{ to destination } j$ $O_i = \text{total trips from origin } i$ $D_j = \text{total trips to destination } j$ $T = \text{total trips} = \sum_i O_i = \sum_j D_j = \sum_i \sum_j T_{ij}$

Defining Terms

Defining Terms

- Lower letter notation (t_{ij}, o_i, d_i) denotes observations from a sample or from an earlier study
- We can further disaggregate trips by **person type** (n) and/or by **mode** (k) $T_{ij}^{kn} = trips \ from \ i \ to \ j \ by \ mode \ k \ and \ person \ type \ n$
- Summation over sub- or superscripts may be indicated implicitly through omissions. E.g.,

$$T_{ij}^n = \sum_k T_{ij}^{kn}$$

Proportional Flow Theory

It is not unreasonable to assume that the flow between *i* and *j* is proportional to the total flow out of *i* and into *j*:

$$T_{ij} \propto O_i D_j$$
$$T_{ij} = k O_i D_j$$

where k is a proportionality constant

• Summing over *i* or *j* and substituting into above relationship gives

$$\sum_{i} T_{ij} = \sum_{i} kO_i D_j \text{ or } \sum_{j} T_{ij} = \sum_{j} kO_i D_j$$
$$D_j = kD_j T \text{ or } O_i = kO_i T$$
$$k = \frac{1}{T}$$
$$\therefore T_{ij} = \frac{O_i D_j}{T}$$

Formal Trip Distribution Models

Possible methods/models to forecast future O-D distribution:

- 1. Growth factor models: simply updating base matrix
 - Uniform growth factor method
 - Singly constrained growth factor method
- 2. Synthetic models: use equations/models to predict future matrix
 - Gravity distribution model
 - Entropy maximizing model
- 3. Biproportional updating (also known as Fratar or Furness method)

Growth Factor Methods

- Use base year O-D matrix to update to target year O-D distribution: A non-parametric approach to trip distribution modeling
 - Base year O-D matrix needs to be accurate for an accurate forecast
 - Base year O-D patterns remain the same for future year. **Only cell values change**.

Uniform Growth Factor Model

Consider fixed growth rate (τ) for all O-D pairs

$$T_{ij} = \tau t_{ij}$$

Base trip matrix

	1	2	3	4	0 _i
1	5	50	100	200	355
2	50	5	100	300	455
3	50	100	5	100	255
4	100	200	250	20	570
dj	205	355	455	620	t = 1635

Consider 20% uniform growth – i.e., $\tau = 1.2$

Forecast trip matrix

	1	2	3	4	0 _i
1	6	60	120	240	426
2	60	6	120	360	546
3	60	120	6	120	306
4	120	240	300	24	684
Di	246	426	546	744	T = 1962

Constrained Growth Factor

• Logical constraints that any feasible trip matrix must satisfy

$$\sum_{j} \tau_{i} T_{ij} = O_{i} \ \forall i \in [1, ..., N] \text{ (row constraint)}$$
$$\sum_{i} \tau_{j} T_{ij} = D_{j} \ \forall j \in [1, ..., N] \text{ (column constraint)}$$

- If only one constraint is met, the corresponding model is called singly constrained model
- If both constraints are met, the corresponding model is called doubly constrained model
- Can define an origin-specific growth factor (τ_i) or a destination-specific growth factor (τ_i)

Singly Constrained Growth Factor

Base trip matrix

	1	2	3	4	0 _i	Target O _i
1	5	50	100	200	355	400
2	50	5	100	300	455	460
3	50	100	5	100	255	400
4	100	200	250	20	570	702
d _j	205	355	455	620	t = 1635	T = 1962

• Origin-specific growth factors are then $\tau_i = \frac{o_i}{o_i} = [1.127, 1.011, 1.569, 1.232]$

Forecast trip matrix

	1	2	3	4	0 _i	Target 0_{i}
1	6	56	113	225	400	400
2	51	5	101	303	460	460
3	78	157	8	157	400	400
4	123	246	308	25	702	702
Di	258	464	530	710	T = 1962	T = 1962

Growth Factor Methods: Pros & Cons

Pros:

- Simple to understand/estimate and directly use observed O-D matrix
- Good for short-term planning for changes in total demand with minimal changes in O-D distribution patterns

Cons:

- Requires an accurate and full O-D table: If any cell in base O-D matrix has zero value, it will be maintained into the future
- Not a reliable method if O-D patterns **expected to change** in forecasting year
- Does not consider trip length and its variation (congestion delays) due to changes in demand, network configuration, network performance, etc.
- Not a sensitive tool for policy analysis!

Synthetic Approach Gravity Model

- Rather than using base O-D table, synthetic approach uses equations to generate trip distribution table
- Synthetic approaches are sensitive to O-D trip length
- Basic formulation:

 $T_{ij} \propto O_i D_j f(c_{ij})$ $T_{ij} = \alpha O_i D_j f_{ij}$

Where α is a **proportionality constant**

- $f(c_{ij})$ or f_{ij} is a function explaining travel impedance/attraction between origin i and destination $j: \frac{\partial f(c_{ij})}{\partial c_{ij}} < 0$
 - Should capture the cost function for travel and the fact **increasing cost decreases attraction** between an O-D pair

Gravity Model Analogy

Singly-Constrained Gravity Model

Do not depend on index j

$$\sum_{j} T_{ij} = O_i = \sum_{j} \alpha_i O_j D_j f_{ij} \rightarrow \alpha_i = \frac{1}{\sum_{j} D_j f_{ij}} (1)$$
$$\sum_{i} T_{ij} = D_j = \sum_{i} \alpha_j D_i D_j f_{ij} \rightarrow \alpha_j = \frac{1}{\sum_{i} O_i f_{ij}} (2)$$

• For an origin-constrained gravity model Do no

Do not depend on index i

$$T_{ij} = \frac{O_i D_j f_{ij}}{\sum_j D_j f_{ij}} \quad \text{Weighted av} \\ \text{class work of }$$

Weighted average as we saw in inclass work on statistics!

• For a destination-constrained gravity model

$$T_{ij} = \frac{O_i D_j f_{ij}}{\sum_i O_i f_{ij}}$$

Doubly-Constrained Gravity Model

- A doubly-constrained model requires **iteration between the origin- and destination-constrained models** until both converge – i.e., there are only **minimal cell value differences** between successive iterations
- First the origin-constrained gravity model

$$T_{ij} = \frac{O_i D_j^* f_{ij}}{\sum_j D_j f_{ij}}$$

• Then the destination-constrained gravity model

$$T_{ij} = \frac{O_i^* D_j f_{ij}}{\sum_i O_i f_{ij}}$$

- D_i^* and O_i^* are intermediate column and row totals, respectively
- α_i and α_j are often labeled A and B, respectively

Doubly-Constrained Gravity Model Balancing

Doubly-Constrained Gravity Model Balancing

Doubly-Constrained Gravity Model Example

• A very simple future O-D trip matrix:

	1	2	O _i
1			200
2			300
Dj	100	400	T = 500

• Impedance function $f_{ij} = 1/t_{ij}^2$

Analogous to the inverse distance in Newton's Universal Law!

t _{ij}	1	2
1	5	15
2	12	6

Doubly-Constrained Gravity Model Example Medicine Solution

2

Total

			-					U/D.	•	2	Total
mpedanc	e Functior	$f_{ij} = 1 / 1$. 2 'ij					1			200
i \i	1		2					2			300
1	0.04000	0.00	444					Total	100	400	500
2	0.00694	0.02	778								
		Iteration	k=1: (D	$*_{i}^{1} = D_{i}$							
		D* _j ¹ =		100	400						
		Denomir	nator, Ori	igin i=1		5.78	•	$= \Sigma_{j'} D'$	*j' ^k f _{1j'}		
		Denomir	nator, Or	igin i=2		11.81	•	$= \Sigma_{j'} D'$	*j' ^k f _{2j'}		
		i \j	1	2	Tota	I					
		1	138.5	61.5	200.0		— T _{ii}	^k = O _i D	* ^k _i f _{ii} / $\Sigma_{i'}$ D	* _i ^k f _{ii'}	
		2	17.6	282.4	300.0	ס			1 1		
		Total	156.1	343.9	500)					
		Ri=	0.641	1 163	+	D.	(Σ. Τ. ^k				
		Rj-1 =	0.359	0.163		رت رت	μιŋ				

1

Doubly-Constrained Gravity Model Example Nebraska Solution

Iteration k=2: (D*j(new)= D*j(old)*Rj)						
D*i ² =	64.1	465.3				
Denominator, Origin i=1 4						
Denominator, Origin i=2 13.37						
i \j	1	2	Total			
1	110.7	89.3	200.0			
2	10.0	290.0	300.0			
Total	120.7	379.3	500			
Rj=	0.829	1.054				
Ri-1 =	0.171	0.054				

Iteration k=3: (D*j(new)= D*j(old)*Rj)							
D*j ³ =	53.1	490.6					
Denomina	tor, Origin	i =1	4.30				
Denomina	tor, Origin	i=2	14.00				
i \j	1	2	Tota				
1	98.7	101.3	200.0				
2	7.9	292.1	300.0				
Total	106.6	393.4	500				
Rj=	0.938	1.017					
Rj-1 =	0.062	0.017					

Future Year Trip Origins Destinations

O/D:	1	2	Total
1			200
2			300
Total	100	400	500

Iteration k=4: (D*j(new)= D*j(old)*Rj)						
D* _j ⁴ =	49.8	498.8				
Denomina	tor, Origin	i=1	4.21			
Denomina	tor, Origin	i=2	14.20			
i \j	1	2	Total			
1	94.7	105.3	200.0			
2	7.3	292.7	300.0			
Total	102.0	398.0	500			
Rj=	0.981	1.005				

Entropy Theory

- Consider a system with a large number of distinct elements
 - A full system description would require complete specification of its **micro states** each individual traveler, their origin, destination, and mode
 - In many cases, it may be sufficient to work with a meso state specification total trips between each origin and destination
 - There may be **numerous micro states** that produce the **same meso state**
 - Macro state all trips on a particular link or total trips generated or attracted to each zone
- Entropy basis is that all micro and meso states consistent with a given macro state are equally likely to
 occur

Entropy Theory

• Micro states associated with meso state T_{ij} given by

$$W(T_{ij}) = \frac{T!}{\prod_{ij} T_{ij}!}$$

- If all micro states are equally likely, what is the most likely meso state?
 - One that results from most micro states
- We can define a Lagrangian optimization problem to maximize log(W) (producing a gravity model), but this would require technical background outside the undergraduate CEE curriculum...

Synthetic Model: Entropy Formulation

• Gravity model can be rewritten more compactly in the following form:

$$T_{ij} = A_i O_i B_j D_j f_{ij}$$

• We can then derive terms for A_i and B_j based on the same conditions found in previous slides -i.e., $\sum_j T_{ij} = O_i$ and $\sum_i T_{ij} = D_j$

$$A_{i} = \frac{1}{\sum_{j} B_{j} D_{j} f_{ij}}$$
$$B_{j} = \frac{1}{\sum_{i} A_{i} O_{i} f_{ij}}$$

 The same result can be found based on information theory – i.e., via entropy maximization instead of gravity assumption

Entropy Maximizing Model Balancing Procedure Cont...

Doubly-Constrained Entropy Model Example

Solution

Im	nodonco	Eunction	f —	41+2
	peuditice	FUNCTION	•ii =	I / L _{ii}

i \i	1	2
1	0.04000	0.00444
2	0.00694	0.02778

Future Year Trip Origins Destinations

O/D:	1	2	Total
1			200
2			300
Total	100	400	500

1	
±.	

lteration1 (Bj = 1)			
Bj =	1	1		
Denom A1	5.78			
Denom A2	11.81			Ai
O/D:	1	2	Total	
1	138.5	61.5	200.0	0.173077
2	17.6	282.4	300.0	0.084706
Total	156.1	343.9	500	

Iteration3				
Bj =	0.530887	1.226514		
Denom A1	4.30			
Denom A2	14.00			Ai
O/D:	1	2	Total	
1	98.7	101.3	200.0	0.232341
2	7.9	292.1	300.0	0.071446
Total	106.6	393.4	500	

(4	

Iteration2				
Bj =	0.64058	1.163158		
Denom A1	4.63			
Denom A2	13.37			Ai
O/D:	1	2	Total	
1	110.7	89.3	200.0	0.215975
2	10.0	290.0	300.0	0.074801
Total	120.7	379.3	500	

Iteratio	n 4				
Bj =		0.498114	1.247026	5	
Denom	A1	4.21			
Denom	A2	14.20			Ai
0/	D:	1	2	2 Total	
	1	94.7	105.3	3 200.0	0.237564
	2	7.3	292.7	7 300.0	0.070414
Το	tal	102.0	398.0) 500	
). 981 1	.005		-
				Assume ε <	= 2% : So, converg

Synthetic Modeling Approach

Issues with Synthetic Models

- Synthetic models often contain considerable errors
- Not surprising: using a fairly simplistic model to represent very complex travel patterns
- Instead of converting observed trip matrix into a "synthetic" model, which can be used to predict future trips: update base trip matrix directly

Base Data Updating Approach

Biproportional Updating: Gravity Factor Method

- Proportionally adjust observed base year trip matrix until it matches forecast year row & column totals
- Iterative procedure required to balance rows & columns

$$O_i^k = \sum_j T_{ij}^k \text{ for } k^{th} \text{ iteration}$$

 $T_{ij}^0 = Base \text{ year } 0 - D \text{ flows/matrix}$
 $O_i^{new} = Forecast \text{ year row sum/generation}$

• Similar definitions for D_j^k and D_j^{new}

Balancing Algorithm

Biproportional Updating: Gravity Method

- Bi-proportional update for Fratar procedure is simply a doubly-constrained gravity model
- Base year trip matrix defines **impedance function**

 $T_{ij} = A_i O_i B_j D_j T_{ij}^0$

$$T_{ij} = O_i(\alpha D_j)f_{ij} = O_i D_j^* T_{ij}^0$$

OR

$$T_{ij} = (\alpha O_i) D_j f_{ij} = O_i^* D_j T_{ij}^0$$

Nebraska

Doubly-Constrained Gravity Method Balancing Procedure Cont...

Example: Biproportional Updating

Base Year Matrix

O/D	1	2	Total
1	60	90	150
2	30	220	250
Total	90	310	400

Future Year Trip Origin & Destination Totals

O/D	1	2	Total
1	?	?	200
2	?	?	300
Total	100	400	500

Solution: Biproportional Gravity Method

lteration 1: (D*j = Dj)						
D*j=	100	400				
Denomina	tor, Org=1		42000.00			
Denomina	tor, Org=2		91000.00			
O/D:	1	2	Total			
1	28.6	171.4	200.0			
2	9.9	290.1	300.0			
Total	38.5	461.5	500			
Rj=	2.600	0.867				

Iteration 3: (D*j(new)= D*j(old)*Rj)					
D*j=	275.1273	341.9661			
Denomina	tor, Org=1		47284.59		
Denomina	tor, Org=2		83486.36		
O/D:	1	2	Total		
1	69.8	130.2	200.0		
2	29.7	270.3	300.0		
Total	99.5	400.5	500		
Rj=	1.005	0.999			

Iteration 2	: (D*j(new))= D*j(old) [;]	*Rj)		
D*j=	260	346.6667			
Denomina	46800.00				
Denomina	84066.67				
O/D:	1	2	Total		
1	66.7	133.3	200.0		
2	27.8	272.2	300.0		
Total	94.5	405.5	500		
Rj=	1.058	0.986			

2

Iteration 4: (D*j(new)= D*j(old)*Rj)								
D*j= 276.5605 341.5236								
Denominator, Org=1 47330.76								
Denominator, Org=2 83432.01								
O/D:	1	2	Total					
1	70.1	129.9	200.0					
2	29.8	270.2	300.0					
Total	100.0	400.0	500					
Rj=	1.000	1.000						
			Converge	d!				

Which method is more appropriate?

- For **short time frames** matrix updating usually more appropriate:
 - However, the bi-proportional updating is not a function of travel time
 - Trip distribution will be **insensitive to changes in travel time** due to congestion or infrastructure improvements
- For **long time frames** better to use a **synthetic model** (e.g., gravity model, entropy maximizing model)
- Ex.: If HH travel survey runs **every 5 years**, what if a major employer changed its office location? Would the employees be able to move right away?
 - No! So this would result in **longer commute distances** in short-term (biproportional updating method will not give good prediction even in short time frame)
 - But eventually people would move closer, or change jobs, so the anomaly would fade away (long-term forecasting by synthetic model will be better).

Impedance Functions

- *β* captures the **sensitivity of trips to travel time**
 - Note: β is capturing **current sensitivity** and keeping it constant for future forecasts is a drawback
 - $\beta = 0$ is the proportional flow model
 - β = negative infinity becomes a cost minimization model -> typical transportation problem
 - So $-\infty \leq \beta \leq 0$
- A good way to understand this type of relationship is to create a **quick plot** (see next slide)

Impedance Functions

Example impedance functions:

- $f(c_{ij}) = \exp(\beta c_{ij}), \beta < 0$ (exponential function)
- $f(c_{ij}) = c_{ij}^n, n < 0$ (power function)
- $f(c_{ij}) = c_{ij}^{n} \exp(\beta c_{ij})$, $n, \beta < 0$ (combined function)
- n, β are parameters estimated from observed data separately from the trip distribution model

Understanding Impedance Functions

t _{ij}	1	2
1	5	15
2	12	6

Assume we have 2 trips starting from each i origin and apply a singly (origin)constrained exponential gravity model

 $\beta = 0$

T_{ij}	1	2
1	1	1
2	1	1

 $\beta = -0.25$

T_{ij}	1	2
1	1.8	0.2
2	0.4	1.6

 $\beta = -0.10$

T_{ij}	1	2
1	1.5	0.5
2	0.7	1.3

$$\beta = -1.0$$

T_{ij}	1	2
1	2	0
2	0	2

If we know the true trip distribution is as below, optimization (e.g., Excel solver) can be used to find β .

T_{ij}	1	2
1	1.16	0.84
2	0.91	1.09

Answer: -0.03142 (or $\pi/100$)

Impedance Function Parameter Estimation

• "Most likely" values of n, β are those that satisfy the equation:

$$\frac{\sum_{i} \sum_{j} t_{ij} T_{ij}}{T} = \frac{\sum_{i} \sum_{j} t_{ij} T_{ij}}{\sum_{i} \sum_{j} T_{ij}} = t_{avg} (1)$$

where t_{avg} is the observed travel time and the left-hand side of equation (1) is the average travel time predicted by the model

• This is the underlying assumption made when solving for β in the previous slide!

Gravity/Entropy Model Goodness-of-Fit Statistics

• How can we statistically measure how well our model fits the data?

 T_{ij} = observed trips; T_{ij}^* = predicted trips $T = total trips; n = No. of zones, n^2 = n \times n$ (No. of trip distribution cells) $T_0 = T/n^2$ $R^{2} = 1 - \left(\frac{\sum_{i} \sum_{j} (T_{ij} - T_{ij}^{*})^{2}}{\sum_{i} \sum_{i} (T_{ij} - T_{0})^{2}}\right)$ $\chi^{2} = \sum_{i} \sum_{j} \frac{\left(T_{ij} - T_{ij}^{*}\right)^{2}}{T_{ij}^{*}}$ Mean Absolute Error (MAE) = $\sum_{i} \sum_{j} |T_{ij} - T_{ij}^*| / n^2$ Normalized $\phi = \sum_{i} \sum_{i} \left(\frac{T_{ij}}{T} \right) \left| \ln \left(\frac{T_{ij}}{T_{ij}^*} \right) \right|$

Chi-squared Statistic

- Measures the hypothesis that observed and predicted matrices are the same (H_0)
- Estimated value less than theoretical value means we fail to reject null hypothesis (i.e., observed and predicted trip matrices represent same population)
- **Problem**: erroneous results if cell values < 5 trips because population too small

Example – R^2

Nebraska Lincoln

Observed O-D Matrix

	Origin		Destination Zone					
Tij =	Zone	1	2	3	4	5	Oi ^o	
	1	50	12	5	13	12	92	
	2	45	24	6	24	3	102	
	3	18	36	7	36	12	109	
	4	30	5	9	41	14	99	
	5	25	3	22	21	15	86	
	Dj°	168	80	49	135	56	488	

Average Trips Per Interchange, To = T/n^2 (where n is the number of matrix cells)

So To =	19.52						
(Tij - Tij [*]) ² =	Origin		Des	stination Z	one		
	Zone	1	2	3	4	5	
	1	4	9	4	16	0	
	2	81	144	0	9	9	
	3	16	121	0	9	36	
	4	81	16	9	1	16	
	5	144	100	49	4	16	
							894
(Tij - To) ² =	Origin		Des	stination Z	one		
	Zone	1	2	3	4	5	
	1	929	57	211	43	57	
	2	649	20	183	20	273	
	3	2	272	157	272	57	
	4	110	211	111	461	30	
	5	30	273	6	2	20	
							4454
So R ² =	0.80						

Predicted O-D Matrix

$$R^{2} = 1 - \frac{\sum_{i} \sum_{j} (T_{ij} - T_{ij}^{*})^{2}}{\sum_{i} \sum_{j} (T_{ij} - T_{o})^{2}}$$

- Denominator: Sq. of observed differences from the simplest case (i.e., same trips in each cell)
- R² is a measure of the proportion of observed variation explained by the gravity model

Observed O-D Matrix

	Origin		Destination Zone						
Tij =	Zone	1	2	3	4	5	Oi ^o		
	1	50	12	5	13	12	92		
	2	45	24	6	24	3	102		
	3	18	36	7	36	12	109		
	4	30	5	9	41	14	99		
	5	25	3	22	21	15	86		
	Dj°	168	80	49	135	56	488		

(Tij - Tij [•]) ² / Tij [•] =	Origin		Destination Zone				
	Zone	1	2	3	4	5	
	1	0.08	1.00	0.57	1.78	0.00	
	2	2.25	4.00	0.00	0.33	1.50	
	3	0.73	4.84	0.00	0.23	2.00	
	4	3.86	1.78	0.75	0.03	1.60	
	5	11.08	7.69	1.69	0.21	1.45	
							49.44

Chi-Squared=	49.44138	
Degrees of Freedom	24	
Chi-Squared Value for 24 DF & 95% confidence =	36.41503	
	49.4>36.4	REJECT

Predicted O-D Matrix

	Origin		Destination Zone										
Tij [•] =	Zone	1	2	3	4	5	Oi ^p						
	1	52	9	7	9	12	89						
	2	36	36	6	27	6	111						
	3	22	25	7	39	18	111						
	4	21	9	12	40	10	92						
	5	13	13	29	19	11	85						
	Dj ^p	144	92	61	134	57	488						

- Validates whether two matrices represent the same population
- Since estimated value > theoretical (test) statistic, we reject the null hypothesis – i.e., two matrices are not the same

Example - MAE

Observed O-D Matrix

	Origin	Destination Zone										Origin Destination Zone			ne			
Tij =	Zone	1	2	3	4	5 Oi	0				Tij [•] =	Zone	e	1 2	3	4	5	Oi ^p
	1	50	12	5	13	12	92						1 5	2 9	7	9	12	89
	2	45	24	6	24	3	102						2 3	6 36	6	27	6	111
	3	18	36	7	36	12	109						3 2	2 25	7	39	18	111
	4	30	5	9	41	14	99						4 2	1 9	12	40	10	92
	5	25	3	22	21	15	86						5 1	.3 13	29	19	11	85
	Dj°	168	80	49	135	56	488					Dj ^p	14	4 92	61	134	57	488
							I											
																1		
							. Orig	in	n Destination Zone						-			
				MAE =	고고	$T_{ij} - T_{ij}^* / r$	² Zon	e	1	2		3	4	5		-		
					i j			1 2	.00	3.00		2.00	4.00	0.00				
								2 9	.00	12.00	(0.00	3.00	3.00				
								3 4	.00	11.00		0.00	3.00	6.00				
								4 9	.00	4.00		3.00	1.00	4.00				
								5 12	.00	10.00		7.00	2.00	4.00				
															118.00)		
						MA	E 4	.72										

- Simplest measure of the average difference between observed and predicted matrix cells
- Lower is better

Predicted O-D Matrix

Example - Normalized ϕ

Predicted O-D Matrix

Observed O-D Matrix

	Origin		Des	stination Zo	one					Origin	Destination Zone					
Tij =	Zone	1	2	3	4	5	Oi°		Tij [•] =	Zone	1	2	3	4	5	Oi ^p
	1	50	12	5	13	12	92			1	52	9	7	9	12	89
	2	45	24	6	24	3	102			2	36	36	6	27	6	111
	3	18	36	7	36	12	109			3	22	25	7	39	18	111
	4	30	5	9	41	14	99			4	21	9	12	40	10	92
	5	25	3	22	21	15	86			5	13	13	29	19	11	85
	Dj⁰	168	80	49	135	56	488			Dj ^p	144	92	61	134	57	488
Tij/T=	Origin		Des	stination Zo	one			(Tij/T)abs(li	n(Tij/Tij*) =	Origin		Des	stination Z	one		
	Zone	1	2	3	4	5				Zone	1	2	3	4	5	
	1	0.10	0.02	0.01	0.03	0.02				1	0.004019	0.007074	0.003447	0.009796	0	
	2	0.09	0.05	0.01	0.05	0.01				2	0.020577	0.019941	0	0.005793	0.004261	
	3	0.04	0.07	0.01	0.07	0.02				3	0.007402	0.0269	0	0.005905	0.00997	
	4	0.06	0.01	0.02	0.08	0.03				4	0.021927	0.000022	0.005306	0.002075	0.009053	
	5	0.05	0.01	0.05	0.04	0.03	1				0.0555	0.009014	0.012454	0.004307	0.009555	0.24
																0121
abs(In(Tij/Tij [•])	Origin		Des	stination Zo	one											
	Zone	1	2	3	4	5										
	1	0.04	0.29	0.34	0.37	0.00										
	2	0.22	0.41	0.00	0.12	0.69										
	3	0.20	0.36	0.00	0.08	0.41										
	4	0.36	0.59	0.29	0.02	0.34										
	5	0.65	1.47	0.28	0.10	0.31			•	Ra	n haz	n inf	ormo	tion	σain	
							7.92			Da	seu U		Jina	uon	54111	
Normalized Phi	0.24															

٠

Larger value means larger error

Other Model Validation Methods

- Compare observed and precited trip length frequency distribution (TLFDs)
- Examine O-D residuals (perhaps on a super-zone basis)
- Examine predicted vs. observed screenline counts

Example: Trip Length Distribution

Observed 2000 O-D Matrix :									Č.						
Origin		Desti	nation Z	one		Trip			Da:						
Zone	1	2	3	4	5	Lengt	Observe	Predicte	N'DO						
1	50.00	12.00	5.00	13.00	12.00	h In	d	d)					
2	45.00~	24.00	6.00	24.00	3.00	Minut	Frequen	Frequenc		4					
3	18.00	36.00	7.00	36.00	12.00	AS	су	У		~					
4	30.00	5.00	9.00	41.00	14.00	63									
5	25.00	3.00	22.00	21.00	15.00	11	50	52							
D _i °	168.00	80.00	49.00	135.00	56.00	14.6	→45	>36	[
						29	18	22				1		1	
Predi	cted 200	00 O-D N	latrix :			13	30	21	Trip	Observe	Predict	~ ~	Cumulat	~ ~	Cumulat
Onimin		Deef	nation 7		\neq	32	25	13	Length	_ d	ed	%freque	_ ive	%freque	_ ive
Origin		Desti	nation 2	one	<u> </u>	12.5	12	9	In	Frequenc	Freque	ncy-Obs	Frequen	ncy-Pred	Frequen
Zone	1	2	3	4/	5	3.54	24	36	Minutes	У	ncy		cy-Obs		cy-Pred
1	52.00	9.00	7.00	9,00	12.00	11	36	25	3.54	24	36	4.92	4.92	7.38	7.38
2	36.00	36.00	6.00	27.00	6.00	19	5	9	7	15	11	3.07	7.99	2.25	9.63
3	22.00	25.00	7.00	39.00	18.00	35	3	13	7.74	7	7	1.43	9.43	1.43	11.07
4	21.00	9.00	12,00	40.00	10.00	28.50	5.00	7.00	9	41	40	8.40	17.83	8.20	19.26
5	13.00	13.00	Z 9.00	19.00	11.00	13.65	6.00	6.00	11	100	87	20.49	38.32	17.83	37.09
			/			7.74	7.00	7.00	12.5	12	9	2.46	40.78	1.84	38.93
Auto 1	Travel T	ime (Mir	nutes) :			16.00	9.00	12.00	13	30	21	6.15	46.93	4.30	43.24
Origin		Destin	nation Zo	ne		29.00	22.00	29.00	13.65	6	6	1.23	48.16	1.23	44.47
Zone	1	2	3	4	5	24	13	9	14.6	45	36	9.22	57.38	7.38	51.84
1	11 00 /	12 50	28.50	24.00	41 00	33	24	21	15	21	19	4.30	61.68	3.89	55.74
2	14.60	3 54	13.65	33.00	31.00		30	39	16	9	12	1.84	63.52	2.46	58.20
3	29.00	11 00	7 74	24.00	34.00	9	41	40	19	5	9	1.02	64.55	1.84	60.04
4	13.00	19.00	16.00	9 00	11 00	15	21	19	24	49	48	10.04	74.59	9.84	69.88
5	32.00	35.00	29.00	15.00	7.00	41	12	12	28.5	5	7	1.02	75.61	1.43	71.31
	52.00	00.00	20.00	10.00	7.00	31	3	10	29	40	51	8.20	83.81	10.45	81.76
						34	14	10	31	3	6	0.61	84.43	1.23	82.99
						7	14	10	32	25	13	5.12	89.55	2.66	85.66
						/	15	11	33	24	27	4.92	94.47	5.53	91.19
									34	12	18	2.46	96.93	3.69	94.88
									35	3	13	0.61	97.54	2.66	97.54

41

12

12

2.46

100.00

2.46 100.00

Example: Trip Length Distribution

Nebras

Trip Distribution Model Estimation Vs. Calibration

Estimation: Process of **finding model parameter values**, which cause the model to "best fit" observed data according to statistical procedure (e.g., regression)

Calibration: Process that occurs **post-estimation** (or in lieu of estimation) involving ad hoc adjustments to model parameters to "force" the model to "better fit" observed data

Gravity/Entropy Model Calibration: K-Factor

• Most common calibration procedure used for gravity models is k-factors:

$$T_{ij} = A_i O_i B_j D_j K_{ij} f_{ij}$$

$$A_i = \frac{1}{\sum_j B_j D_j K_{ij} F_{ij}}$$

$$B_j = \frac{1}{\sum_i A_i O_i K_{ij} F_{ij}}$$

- Choose K_{ii} to reduce difference between observed and predicted:
 - Screenline flows
 - TLFDs and/or
 - Key O-D pairs

Gravity/Entropy Model Calibration: K-Factor

- Rationale for K-factors is to capture systematic differences in spatial flows not explained by travel time (or other terms in gravity model)
 - E.g., residential zones with high concentrations of white collar workers are more likely to generate work trips to employment zones with high concentrations of white collar jobs than zones with predominantly blue collar jobs
 - Use K-factors to link "white collar" origin and destination zones

Drawbacks of Aggregate Trip Distribution Models

- Neither systematic- nor updating-type models capture idiosyncrasy of destination location choice by individuals because aggregate behavior into trip distribution matrices
- Lack of policy sensitivity E.g., how would the trip distribution in Lincoln respond to a new employment center north of the city?