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Problem Definition

• Trip generation gives total trips generated from each origin zone (Oi) and total trips attracted to 
each destination zone (Dj)

• OD intercept or home travel diaries can be used to determine trip patterns in terms of the 
combination of origin and destination pairs

• Even with a large sample, we will have zone pairs that are not sampled, so we need a method 
that can generate trips between OD pairs

• Trip distribution stage estimates the “most likely” origin-destination (O-D) trip (or flow) matrix, 
given known origin and destination totals for each zone (plus any additional relevant & known 
information)

• We will focus here on aggregate distribution methods, but it is possible to consider distribution 
as a disaggregate choice using discrete choice models of destination choice (subsequent 
lectures)



Defining Terms

𝑇𝑇𝑖𝑖𝑖𝑖 = total trips from origin 𝑖𝑖 to destination 𝑗𝑗
𝑂𝑂𝑖𝑖 = total trips from origin 𝑖𝑖
𝐷𝐷𝑗𝑗 = total trips to destination 𝑗𝑗
T = total trips = ∑𝑖𝑖 𝑂𝑂𝑖𝑖 = ∑𝑗𝑗 𝐷𝐷𝑗𝑗 = ∑𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖
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Defining Terms

Trips from zone 2…

… to zone 3

Intrazonal trips



Defining Terms

• Lower letter notation (𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑜𝑜𝑖𝑖 ,𝑑𝑑𝑖𝑖) denotes observations from a sample or from an earlier study

• We can further disaggregate trips by person type (n) and/or by  mode (k)
𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑗𝑗 𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛

• Summation over sub- or superscripts may be indicated implicitly through omissions. E.g.,

𝑇𝑇𝑖𝑖𝑖𝑖𝑛𝑛 = �
𝑘𝑘

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘



Proportional Flow Theory

• It is not unreasonable to assume that the flow between 𝑖𝑖 and 𝑗𝑗 is proportional to the total flow out of 𝑖𝑖 and 
into 𝑗𝑗:

𝑇𝑇𝑖𝑖𝑖𝑖 ∝ 𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗

where 𝑘𝑘 is a proportionality constant

• Summing over 𝒊𝒊 or 𝒋𝒋 and substituting into above relationship gives

�
𝑖𝑖

𝑇𝑇𝑖𝑖𝑖𝑖 = �
𝑖𝑖

𝑘𝑘𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗 𝑜𝑜𝑜𝑜 �
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖 = �
𝑗𝑗

𝑘𝑘𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗

𝐷𝐷𝑗𝑗 = 𝑘𝑘𝐷𝐷𝑗𝑗𝑇𝑇 𝑜𝑜𝑜𝑜 𝑂𝑂𝑖𝑖 = 𝑘𝑘𝑂𝑂𝑖𝑖𝑇𝑇

𝑘𝑘 =
1
𝑇𝑇

∴ 𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗
𝑇𝑇



Formal Trip Distribution Models

Possible methods/models to forecast future O-D distribution:
1. Growth factor models: simply updating base matrix

• Uniform growth factor method
• Singly constrained growth factor method

2. Synthetic models: use equations/models to predict future matrix
• Gravity distribution model
• Entropy maximizing model

3. Biproportional updating (also known as Fratar or Furness method)



Growth Factor Methods

• Use base year O-D matrix to update to target year O-D distribution: A non-parametric approach 
to trip distribution modeling

• Base year O-D matrix needs to be accurate for an accurate forecast

• Base year O-D patterns remain the same for future year. Only cell values change.



Uniform Growth Factor Model

Consider fixed growth rate (𝜏𝜏) for all O-D pairs
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑡𝑡𝑖𝑖𝑖𝑖

Base trip matrix

Consider 20% uniform growth – i.e., 𝜏𝜏 = 1.2
Forecast trip matrix

1 2 3 4 𝐨𝐨𝐢𝐢
1 5 50 100 200 355
2 50 5 100 300 455
3 50 100 5 100 255
4 100 200 250 20 570
𝐝𝐝𝐣𝐣 205 355 455 620 t = 1635

1 2 3 4 𝐎𝐎𝐢𝐢
1 6 60 120 240 426
2 60 6 120 360 546
3 60 120 6 120 306
4 120 240 300 24 684
𝐃𝐃𝐣𝐣 246 426 546 744 T = 1962



Constrained Growth Factor

• Logical constraints that any feasible trip matrix must satisfy

�
𝑗𝑗

𝜏𝜏𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖  ∀𝑖𝑖 ∈ 1, . . ,𝑁𝑁  (𝐫𝐫𝐫𝐫𝐫𝐫 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜)

�
𝑖𝑖

𝜏𝜏𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑗𝑗  ∀𝑗𝑗 ∈ 1, . . ,𝑁𝑁  (𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜)

• If only one constraint is met, the corresponding model is called singly constrained model

• If both constraints are met, the corresponding model is called doubly constrained model

• Can define an origin-specific growth factor (𝜏𝜏𝑖𝑖) or a destination-specific growth factor (𝜏𝜏𝑗𝑗)



Singly Constrained Growth Factor

Base trip matrix

• Origin-specific growth factors are then 𝜏𝜏𝑖𝑖 = 𝑂𝑂𝑖𝑖
𝑜𝑜𝑖𝑖

= [1.127,1.011,1.569,1.232]
Forecast trip matrix

1 2 3 4 𝐨𝐨𝐢𝐢
1 5 50 100 200 355
2 50 5 100 300 455
3 50 100 5 100 255
4 100 200 250 20 570
𝐝𝐝𝐣𝐣 205 355 455 620 t = 1635

1 2 3 4 𝐎𝐎𝐢𝐢 Target 𝐎𝐎𝐢𝐢
1 6 56 113 225 400 400
2 51 5 101 303 460 460
3 78 157 8 157 400 400
4 123 246 308 25 702 702
𝐃𝐃𝐣𝐣 258 464 530 710 T = 1962 T = 1962

Target 𝐎𝐎𝐢𝐢
400
460
400
702

T = 1962



Growth Factor Methods: Pros & Cons

Pros:
• Simple to understand/estimate and directly use observed O-D matrix
• Good for short-term planning for changes in total demand with minimal 

changes in O-D distribution patterns
Cons:

• Requires an accurate and full O-D table: If any cell in base O-D matrix has zero 
value, it will be maintained into the future

• Not a reliable method if O-D patterns expected to change in forecasting year
• Does not consider trip length and its variation (congestion delays) due to 

changes in demand, network configuration, network performance, etc.
• Not a sensitive tool for policy analysis!



Synthetic Approach Gravity Model

• Rather than using base O-D table, synthetic approach uses equations to generate trip 
distribution table

• Synthetic approaches are sensitive to O-D trip length
• Basic formulation:

𝑇𝑇𝑖𝑖𝑖𝑖 ∝ 𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓 𝑐𝑐𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

Where 𝛼𝛼 is a proportionality constant

• 𝑓𝑓 𝑐𝑐𝑖𝑖𝑖𝑖  or 𝑓𝑓𝑖𝑖𝑖𝑖  is a function explaining travel impedance/attraction between origin 𝑖𝑖 and 

destination 𝑗𝑗: 𝜕𝜕𝜕𝜕 𝑐𝑐𝑖𝑖𝑖𝑖
𝜕𝜕𝑐𝑐𝑖𝑖𝑖𝑖

< 0

• Should capture the cost function for travel and the fact increasing cost decreases attraction 
between an O-D pair



Gravity Model Analogy

𝐹𝐹 =
𝐺𝐺𝑚𝑚1𝑚𝑚2

𝑟𝑟2
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Gravity Model Analogy

𝐹𝐹 =
𝐺𝐺𝑚𝑚1𝑚𝑚2

𝑟𝑟2

2.0kg

1.0 kg

5.0 kg

10 m

40 m

2,000 HH

1,000 HH

5,000 HH

10 km

40 km



Singly-Constrained Gravity Model

�
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖 = �
𝑗𝑗

𝛼𝛼𝑖𝑖𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖 → 𝛼𝛼𝑖𝑖 =
1

∑𝑗𝑗 𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
 (1)

�
𝑖𝑖

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑗𝑗 = �
𝑖𝑖

𝛼𝛼𝑗𝑗𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖 → 𝛼𝛼𝑗𝑗 =
1

∑𝑖𝑖 𝑂𝑂𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
 (2)

• For an origin-constrained gravity model

𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
∑𝑗𝑗 𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

• For a destination-constrained gravity model

𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
∑𝑖𝑖 𝑂𝑂𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

Do not depend on index j

Do not depend on index i

Weighted average as we saw in in-
class work on statistics!



Doubly-Constrained Gravity Model

• A doubly-constrained model requires iteration between the origin- and destination-constrained models 
until both converge – i.e., there are only minimal cell value differences between successive iterations

• First the origin-constrained gravity model

𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗∗𝑓𝑓𝑖𝑖𝑖𝑖
∑𝑗𝑗 𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

• Then the destination-constrained gravity model

𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑖𝑖∗𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
∑𝑖𝑖 𝑂𝑂𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

• 𝐷𝐷𝑗𝑗∗ and 𝑂𝑂𝑖𝑖∗ are intermediate column and row totals, respectively

• 𝛼𝛼𝑖𝑖 and 𝛼𝛼𝑗𝑗 are often labeled A and B, respectively



Doubly-Constrained Gravity Model Balancing 
Procedure

k=0

𝐷𝐷𝑗𝑗∗
1

= 𝐷𝐷𝑗𝑗

k=k+1 B

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘  =  𝑂𝑂𝑂𝑂
𝐷𝐷𝑗𝑗∗𝑓𝑓𝑖𝑖𝑖𝑖

∑𝑗𝑗 𝐷𝐷𝑗𝑗∗
𝑘𝑘𝑓𝑓𝑖𝑖𝑖𝑖

A



Doubly-Constrained Gravity Model Balancing 
Procedure Cont…

𝑅𝑅𝑗𝑗 =
𝐷𝐷𝑗𝑗

∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘

𝑅𝑅𝑗𝑗 − 1 < 𝜖𝜖 ∀ 𝑗𝑗? Stop

𝐷𝐷𝑗𝑗∗
𝑘𝑘+1

= 𝐷𝐷𝑗𝑗∗
𝑘𝑘
𝑅𝑅𝑗𝑗

A

B

Yes

No



Doubly-Constrained Gravity Model Example

1 2 𝐎𝐎𝐢𝐢
1 200
2 300
𝐃𝐃𝐣𝐣 100 400 T = 500

• A very simple future O-D trip matrix:

• Impedance function 𝑓𝑓𝑖𝑖𝑖𝑖 = 1/𝑡𝑡𝑖𝑖𝑖𝑖2

𝑡𝑡𝑖𝑖𝑖𝑖 1 2
1 5 15
2 12 6

Analogous to the inverse distance in Newton’s Universal Law!



Doubly-Constrained Gravity Model Example
Solution

1



Doubly-Constrained Gravity Model Example
Solution

2

3

4



Entropy Theory

• Consider a system with a large number of distinct elements

• A full system description would require complete specification of its micro states – each individual 
traveler, their origin, destination, and mode

• In many cases, it may be sufficient to work with a meso state specification – total trips between each 
origin and destination

• There may be numerous micro states that produce the same meso state

• Macro state – all trips on a particular link or total trips generated or attracted to each zone

• Entropy basis is that all micro and meso states consistent with a given macro state are equally likely to 
occur



Entropy Theory

• Micro states associated with meso state Tij given by

𝑊𝑊 𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑇𝑇!

∏𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖!

• If all micro states are equally likely, what is the most likely meso state?
• One that results from most micro states

• We can define a Lagrangian optimization problem to maximize log(W) (producing a gravity 
model), but this would require technical background outside the undergraduate CEE 
curriculum…



Synthetic Model: Entropy Formulation

• Gravity model can be rewritten more compactly in the following form:
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

• We can then derive terms for 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑗𝑗  based on the same conditions found in previous slides 
– i.e., ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖  and∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑗𝑗

𝐴𝐴𝑖𝑖 =
1

∑𝑗𝑗 𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

𝐵𝐵𝑗𝑗 =
1

∑𝑖𝑖 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

• The same result can be found based on information theory – i.e., via entropy maximization 
instead of gravity assumption



Entropy Maximizing Model Balancing 
Procedure

k=0

𝐵𝐵𝑗𝑗∗
0

= 1

k=k+1 B

𝐴𝐴𝑖𝑖𝑘𝑘 =
1

∑𝑗𝑗 𝐵𝐵𝑗𝑗𝑘𝑘−1𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
;𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝐴𝐴𝑖𝑖𝑘𝑘𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝑘𝑘−1𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖 =

𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝑘𝑘−1𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖
∑𝑗𝑗 𝐵𝐵𝑗𝑗𝑘𝑘−1𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖

A

Update 𝐵𝐵𝑗𝑗𝑘𝑘 = 1
∑𝑖𝑖 𝐴𝐴𝑖𝑖

𝑘𝑘𝑂𝑂𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖



Entropy Maximizing Model Balancing 
Procedure Cont…

𝑅𝑅𝑗𝑗 =
𝐷𝐷𝑗𝑗

∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖

𝑅𝑅𝑗𝑗 − 1 < 𝜖𝜖 ∀ 𝑗𝑗? Stop

𝐷𝐷𝑗𝑗∗
𝑘𝑘+1

= 𝐷𝐷𝑗𝑗∗
𝑘𝑘
𝑅𝑅𝑗𝑗

A

B

Yes

No



Doubly-Constrained Entropy Model Example
Solution

1

2

3

4



Synthetic Modeling Approach

Base O-D Matrix
Synthetic Model

𝑇𝑇𝑖𝑖𝑖𝑖 = ⋯Model Calibration

Forecast Year O-D 
MatrixOi Dj

Forecast Year 
Trip Ends



Issues with Synthetic Models

• Synthetic models often contain considerable errors

• Not surprising: using a fairly simplistic model to represent very complex travel 
patterns

• Instead of converting observed trip matrix into a “synthetic” model, which can 
be used to predict future trips: update base trip matrix directly



Base Data Updating Approach

Base O-D Matrix

Forecast Year O-D 
Matrix

Oi Dj
Forecast Year 

Trip Ends



Biproportional Updating: Gravity Factor 
Method
• Proportionally adjust observed base year trip matrix until it matches forecast year row & column 

totals

• Iterative procedure required to balance rows & columns

𝑂𝑂𝑖𝑖𝑘𝑘 = �
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘  𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖𝑖𝑖0 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑂𝑂 − 𝐷𝐷 ⁄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑂𝑂𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠/𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

• Similar definitions for 𝐷𝐷𝑗𝑗𝑘𝑘 and 𝐷𝐷𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛



Balancing Algorithm
k=0

k=k+1

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘−1
𝑂𝑂𝑖𝑖𝑘𝑘

𝑂𝑂𝑖𝑖𝑘𝑘−1

k=k+1

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘−1
𝐷𝐷𝑗𝑗𝑘𝑘

𝐷𝐷𝑗𝑗𝑘𝑘−1
Convergence?

Stop



Biproportional Updating: Gravity Method

• Bi-proportional update for Fratar procedure is simply a doubly-constrained gravity model

• Base year trip matrix defines impedance function
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖0

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖 𝛼𝛼𝐷𝐷𝑗𝑗 𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗∗𝑇𝑇𝑖𝑖𝑖𝑖0

OR

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑂𝑂𝑖𝑖 𝐷𝐷𝑗𝑗𝑓𝑓𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖∗𝐷𝐷𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖0



Doubly-Constrained Gravity Method 
Balancing Procedure

k=0

𝐷𝐷𝑗𝑗∗
1

= 𝐷𝐷𝑗𝑗

k=k+1 B

𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘 =
𝑂𝑂𝑖𝑖𝐷𝐷𝑗𝑗∗

𝑘𝑘
𝑇𝑇𝑖𝑖𝑖𝑖0

∑𝑗𝑗 𝐷𝐷𝑗𝑗∗
𝑘𝑘𝑇𝑇𝑖𝑖𝑖𝑖0

A



Doubly-Constrained Gravity Method 
Balancing Procedure Cont…

𝑅𝑅𝑗𝑗 =
𝐷𝐷𝑗𝑗

∑𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘

𝑅𝑅𝑗𝑗 − 1 < 𝜖𝜖 ∀ 𝑗𝑗? Stop

𝐷𝐷𝑗𝑗∗
𝑘𝑘+1

= 𝐷𝐷𝑗𝑗∗
𝑘𝑘
𝑅𝑅𝑗𝑗

A

B

Yes

No



Example: Biproportional Updating

O/D 1 2 Total

1 60 90 150

2 30 220 250

Total 90 310 400

Base Year Matrix

O/D 1 2 Total

1 ? ? 200

2 ? ? 300

Total 100 400 500

Future Year Trip Origin & Destination Totals



Solution: Biproportional Gravity Method

1

3

2

4

Converged!



Which method is more appropriate?

• For short time frames - matrix updating usually more appropriate:
• However, the bi-proportional updating is not a function of travel time
• Trip distribution will be insensitive to changes in travel time due to congestion or infrastructure 

improvements
• For long time frames - better to use a synthetic model (e.g., gravity model, entropy maximizing 

model)
• Ex.: If HH travel survey runs every 5 years, what if a major employer changed its office location?  

Would the employees be able to move right away?
• No!  So this would result in longer commute distances in short-term (biproportional updating 

method will not give good prediction even in short time frame)
• But eventually people would move closer, or change jobs, so the anomaly would fade away 

(long-term forecasting by synthetic model will be better).



Impedance Functions

• 𝛽𝛽 captures the sensitivity of trips to travel time

• Note: 𝛽𝛽 is capturing current sensitivity and keeping it constant for future forecasts is a drawback

• 𝛽𝛽 = 0 is the proportional flow model

• 𝛽𝛽 = negative infinity becomes a cost minimization model -> typical transportation problem

• So −∞ ≤ 𝛽𝛽 ≤ 0

• A good way to understand this type of relationship is to create a quick plot (see next slide)



Impedance Functions

Example impedance functions:
• 𝑓𝑓 𝑐𝑐𝑖𝑖𝑖𝑖 = exp 𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖 ,𝛽𝛽 < 0 (exponential function)
• 𝑓𝑓 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑛𝑛 ,𝑛𝑛 < 0 (power function)
• 𝑓𝑓 𝑐𝑐𝑖𝑖𝑖𝑖 = cijnexp 𝛽𝛽𝑐𝑐𝑖𝑖𝑖𝑖 ,𝑛𝑛,𝛽𝛽 < 0 (combined function)
• 𝑛𝑛,𝛽𝛽 are parameters estimated from observed data separately from the trip distribution model 



Understanding Impedance Functions

𝑡𝑡𝑖𝑖𝑖𝑖 1 2
1 5 15
2 12 6

𝛽𝛽 = 0

Assume we have 2 trips starting from each i origin and apply a singly (origin)-
constrained exponential gravity model

𝑇𝑇𝑖𝑖𝑖𝑖 1 2
1 1 1
2 1 1

𝛽𝛽 = −0.10

𝑇𝑇𝑖𝑖𝑖𝑖 1 2
1 1.5 0.5
2 0.7 1.3

𝛽𝛽 = −0.25

𝑇𝑇𝑖𝑖𝑖𝑖 1 2
1 1.8 0.2
2 0.4 1.6

𝛽𝛽 = −1.0

𝑇𝑇𝑖𝑖𝑖𝑖 1 2
1 2 0
2 0 2

If we know the true trip distribution is 
as below, optimization (e.g., Excel 
solver) can be used to find 𝛽𝛽.

𝑇𝑇𝑖𝑖𝑖𝑖 1 2
1 1.16 0.84
2 0.91 1.09

Answer: -0.03142 (or 𝜋𝜋/100)



Impedance Function Parameter Estimation

• “Most likely” values of n, 𝛽𝛽 are those that satisfy the equation:
∑𝑖𝑖 ∑𝑗𝑗 𝑡𝑡𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖

𝑇𝑇
=
∑𝑖𝑖 ∑𝑗𝑗 𝑡𝑡𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖
∑𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖

= 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 (1)

where 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 is the observed travel time and the left-hand side of equation (1) is the 
average travel time predicted by the model

• This is the underlying assumption made when solving for 𝛽𝛽 in the previous slide!



Gravity/Entropy Model Goodness-of-Fit 
Statistics
• How can we statistically measure how well our model fits the data?

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;𝑇𝑇𝑖𝑖𝑖𝑖∗ = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑇𝑇 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;𝑛𝑛 = 𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧,𝑛𝑛2 = 𝑛𝑛 × 𝑛𝑛 (𝑁𝑁𝑁𝑁. 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑇𝑇0 = 𝑇𝑇/𝑛𝑛2

𝑅𝑅2 = 1 −
∑𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖∗

2

∑𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇0
2

𝜒𝜒2 = �
𝑖𝑖

�
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖∗
2

𝑇𝑇𝑖𝑖𝑖𝑖∗

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝑖𝑖

�
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖∗ /𝑛𝑛2

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝜙𝜙 = �
𝑖𝑖

�
𝑗𝑗

𝑇𝑇𝑖𝑖𝑖𝑖
𝑇𝑇

ln
𝑇𝑇𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖𝑖𝑖∗



Chi-squared Statistic

• Measures the hypothesis that observed and predicted matrices are the same 
(H0)

• Estimated value less than theoretical value means we fail to reject null 
hypothesis (i.e., observed and predicted trip matrices represent same 
population)

• Problem: erroneous results if cell values < 5 trips because population too small



Example – R2

Observed O-D Matrix Predicted O-D Matrix

𝑅𝑅2 = 1 −
∑𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑖𝑖𝑖𝑖∗

2

∑_𝑖𝑖 ∑𝑗𝑗 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜
2

• Denominator: Sq. of observed differences from 
the simplest case (i.e., same trips in each cell)

• R2 is a measure of the proportion of observed 
variation explained by the gravity model



Example – 𝜒𝜒2

• Validates whether two matrices represent the 
same population

• Since estimated value > theoretical (test) 
statistic, we reject the null hypothesis – i.e., 
two matrices are not the same

Observed O-D Matrix Predicted O-D Matrix



Example - MAE

• Simplest measure of the average difference between observed and predicted matrix cells

• Lower is better

Observed O-D Matrix Predicted O-D Matrix



Example - 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝜙𝜙
Observed O-D Matrix Predicted O-D Matrix

• Based on information gain

• Larger value means larger error



Other Model Validation Methods

• Compare observed and precited trip length frequency distribution (TLFDs)

• Examine O-D residuals (perhaps on a super-zone basis)

• Examine predicted vs. observed screenline counts



Example: Trip Length Distribution



Example: Trip Length Distribution



Trip Distribution Model
Estimation Vs. Calibration
Estimation: Process of finding model parameter values, which cause the model to 
“best fit” observed data according to statistical procedure (e.g., regression)

Calibration: Process that occurs post-estimation (or in lieu of estimation) involving 
ad hoc adjustments to model parameters to “force” the model to “better fit” 
observed data



Gravity/Entropy Model Calibration: K-Factors

• Most common calibration procedure used for gravity models is k-factors:
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖

𝐴𝐴𝑖𝑖 =
1

∑𝑗𝑗 𝐵𝐵𝑗𝑗𝐷𝐷𝑗𝑗𝐾𝐾𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖

𝐵𝐵𝑗𝑗 =
1

∑𝑖𝑖 𝐴𝐴𝑖𝑖𝑂𝑂𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑖𝑖
• Choose Kij to reduce difference between observed and predicted:

• Screenline flows
• TLFDs and/or
• Key O-D pairs



Gravity/Entropy Model Calibration: K-Factors

• Rationale for K-factors is to capture systematic differences in spatial flows not 
explained by travel time (or other terms in gravity model)

• E.g., residential zones with high concentrations of white collar workers are 
more likely to generate work trips to employment zones with high 
concentrations of white collar jobs than zones with predominantly blue collar 
jobs

• Use K-factors to link “white collar” origin and destination zones



Drawbacks of Aggregate Trip Distribution 
Models
• Neither systematic- nor updating-type models capture idiosyncrasy of 

destination location choice by individuals because aggregate behavior into trip 
distribution matrices

• Lack of policy sensitivity – E.g., how would the trip distribution in Lincoln 
respond to a new employment center north of the city?


	Trip Distribution
	Outline
	Problem Definition
	Defining Terms
	Defining Terms
	Defining Terms
	Proportional Flow Theory
	Formal Trip Distribution Models
	Growth Factor Methods
	Uniform Growth Factor Model
	Constrained Growth Factor
	Singly Constrained Growth Factor
	Growth Factor Methods: Pros & Cons
	Synthetic Approach Gravity Model
	Gravity Model Analogy
	Gravity Model Analogy
	Singly-Constrained Gravity Model
	Doubly-Constrained Gravity Model
	Doubly-Constrained Gravity Model Balancing Procedure
	Doubly-Constrained Gravity Model Balancing Procedure Cont…
	Doubly-Constrained Gravity Model Example
	Doubly-Constrained Gravity Model Example�Solution
	Doubly-Constrained Gravity Model Example�Solution
	Entropy Theory
	Entropy Theory
	Synthetic Model: Entropy Formulation
	Entropy Maximizing Model Balancing Procedure
	Entropy Maximizing Model Balancing Procedure Cont…
	Doubly-Constrained Entropy Model Example�Solution
	Synthetic Modeling Approach
	Issues with Synthetic Models
	Base Data Updating Approach
	Biproportional Updating: Gravity Factor Method
	Balancing Algorithm
	Biproportional Updating: Gravity Method
	Doubly-Constrained Gravity Method Balancing Procedure
	Doubly-Constrained Gravity Method Balancing Procedure Cont…
	Example: Biproportional Updating
	Solution: Biproportional Gravity Method
	Which method is more appropriate?
	Impedance Functions
	Impedance Functions
	Understanding Impedance Functions
	Impedance Function Parameter Estimation
	Gravity/Entropy Model Goodness-of-Fit Statistics
	Chi-squared Statistic
	Example – R2
	Example –  𝜒 2 
	Example - MAE
	Example - 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝜙
	Other Model Validation Methods
	Example: Trip Length Distribution
	Example: Trip Length Distribution
	Trip Distribution Model�Estimation Vs. Calibration
	Gravity/Entropy Model Calibration: K-Factors
	Gravity/Entropy Model Calibration: K-Factors
	Drawbacks of Aggregate Trip Distribution Models

