
Freight Network Models

CIVE 461: Urban Transportation Planning



Basics of Network Models

• Types of problems:
• Calculating travel times & distances where travel is restricted by the 

network
• Vehicle routing, collection, & distribution
• Site selection & location of facilities (not covered here)



Node Covering Problems

Traveling Salesman Problem



Traveling Salesman Problem

• Find the shortest cycle starting & ending at node O that visits each node A, B, C, 
D, etc. at least once

• TSP1 simplification
• Given a starting point (depot)
• Visit n-1 points
• Network completely connected
• Network satisfies triangular inequality: l(i,j) <= l(i,k) + l (k,j)
• Distance matrix is symmetric
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Solving TSP1

• 3-step processing – each step applies a well-known algorithm
• Final network graph H consists of minimum spanning tree (MST) + min. length 

pairwise matching
• Heuristic solution (good, but not necessarily optimal)
• Theorem: L(H) < 1.5 L(TST, or Traveling Salesman Theorem result)



Example TSP1 Problem
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Depot
Distance Matrix
From\ To 1 2 3 4 5 6 7

1 0 25 43 57 43 61 29
2 25 0 29 34 43 68 49
3 43 29 0 52 72 96 72
4 57 34 52 0 45 71 71
5 43 43 72 45 0 27 36
6 61 68 96 71 27 0 40
7 29 49 72 71 36 40 0

Heuristic Algorithm for TSP1
Step 1: Find the MST
Step 2: Minimum length pairwise
 matching of odd-degree nodes.  Add
these links to the network
Step 3:  Draw Eulerian Circuit
Step 4:  For nodes that are visited more
than once, improve by taking advantage
of the triangular inequality
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Example TSP1 Optimal Solution

1

2

3

4

5

6

7

Depot
Distance Matrix
From\ To 1 2 3 4 5 6 7

1 0 25 43 57 43 61 29
2 25 0 29 34 43 68 49
3 43 29 0 52 72 96 72
4 57 34 52 0 45 71 71
5 43 43 72 45 0 27 36
6 61 68 96 71 27 0 40
7 29 49 72 71 36 40 0

Heuristic Algorithm for TSP1
Step 1: Find the MST
Step 2: Minimum length pairwise
 matching of odd-degree nodes.  Add
these links to the network
Step 3:  Draw Eulerian Circuit
Step 4:  For nodes that are visited more
than once, improve by taking advantage
of the triangular inequality



Multi-Route Problems

• Actual situations: several vehicles share provision of service in an area

• Mostly heuristic algorithms; two approaches:
• Partition region into smaller districts: design optimal single routes for each 

district
• Design single route for whole area: subdivide route into no. of sub-routes each 

covered by diff. vehicle



Multi-Route Node Covering

• Basis for classification of node covering problems:
• Number of vehicles
• Number of tour origins/depots
• Existence of constraints on vehicle capacity, max. tour length, ..

• Classical TSP: single vehicle, single origin, no constraints

• m-TSP:
• m distinct tours
• Single common origin

• VRP (vehicle routing problems)
• Constraints on capacity or max. distance
• Need to minimize total system cost



m-TSP

• Design of:
• m distinct tours
• Collectively visit each demand point at least once
• Use a single common origin/destination 

• Procedure:
• Replace origin by m exact copies
• Assign “infinite” lengths to connections between “origins”
• Solve as classical (m+n) point TSP
• Merge copies of origin => m diff. tours



Example m-TSP Problem
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Depot

A) Add m “copies” of the origin with 
infinite length between origins  

B)   Use Heuristic Algorithm for TSP1
Step 1: Find the MST
Step 2: Minimum length pairwise

 matching of odd-degree nodes.  
Add these links to the network

Step 3:  Draw Eulerian Circuit
Step 4:  For nodes that are visited more

than once, improve by taking 
advantage of triangular inequality

1b

Distance Matrix
From/ To 1a 1b 2 3 4 5 6 7

1a ∞ ∞ 25 43 57 43 61 29
1b ∞ ∞ 25 43 57 43 61 29
2 25 25 ∞ 29 34 43 68 49
3 43 43 29 ∞ 52 72 96 72
4 57 57 34 52 ∞ 45 71 71
5 43 43 43 72 45 ∞ 27 36
6 61 61 68 96 71 27 ∞ 40
7 29 29 49 72 71 36 40 ∞ 



Single-Depot VRP

• Two algorithms:

• Clarke-Wright savings algorithm – basic idea:
• Depot D, n demand points
• Initial solution: use n vehicles, one per demand point
• “save” by combining two points

• Sweep algorithm – basic idea:
• “cluster first, route second”



Clarke-Wright Algorithm
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Combining Trips
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Assignment of Customers to Sectors
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DC
If we used fixed sectors,
then a vehicle responsible
for one sector may exceed
 capacity

DC = Distribution Center



Sweep Algorithm
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Start with an
arbitrary “ray”
from the depot

“Sweep” over
demand points
until vehicle
capacity is met

DC = Distribution Center



Routing of Individual Vehicles
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